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We present a numerical method, implemented in a Fortran code
RESON, for computing resonances of the radial one-dimensional
Schradinger equation, for an underlying potential that decays suf-
ficiently fast at infinity. The basic approach is to maximize the time-
delay function r{A)} as in the LeRoy program TDELAY, We present
some Lheory that allows a preliminary bracketing of the tesonance and
various ways of reducing the total work. Together with automatic
meshsize selection this leads 10 a methad that hps proved efficient,
rabust, and extremely trouble-{tea in numerical tests. The ¢ode makes
use of Marletta’s Sturm-Liouville solver, SLO2F, due to go into the
NAG library, © 1994 Academic Press, Inc.

L. INTRODUCTION

Quantum-mechanical resonances, or quasi-bound states,
arc a phenomenon displayed by certain types of potential
function, In the context of electromagnetic radiation from
excited atoms they are observable spectroscopically as
gencrating bright (emission) or dark (absorption) bands
which are broader than the sharp lincs shown by bound-
state cnergy transitions. There is a gradation from narrow,
distinct resonances to broad resonances that are hard to dis-
tinguish from the background. J. R. Taylor’s book “scatter-
ing Theory™ [1] gives an introduction to the physical effects
of resonances; see also the bibliography by Leroy er al
[2, 3] for a survey of their effects and importance in chemi-
cal reaction kinetics. They are also significant in some
technological areas such as wave-guide design.

This paper describes a0 new algorithm for computing
resonances of the one-dimensional Schridinger equation-- -
modelling, for instance, the interaction of an electron with a
spherically symmetric nucleus, The method is based on the
time-delay definition of a resonance, as is R, J. LeRoy’s well-
known TDELAY program [4], but it incorporates
methods which make it more robust and easier to use than
the latter on typical problems. A good description of the
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physical content of the time-delay definition is given in
Taylor [, Chap. 13]. For a mathematically rigorous treat-
ment of scattering theory see Reed and Simon’s “Methods of
Mathematical Physics™ [5, Vol. ILL]. Formula (19) for the
time delay seems to be due to F. T. Smith [6].

The miaterial is organized as follows. Section 2 defines the
notation and describes informally what a resonance is. Sec-

tion. Section 4 describes the theory underlying the parts of
the method that appear to be new. Section 5 discusses algo-
rithm design, outlines the overall algorithm that results, and
the user interface of the code. Section 6 gives numerical
results and comparisons. Section 7 summarizes the results
and gives pointers for further work.

2. NOTATION AND INFORMAL DESCRIPTION

We treat the radial Schridinger equation,

—u" +glxlu=Au on O0<x<oo, (1)
where x is the distance from a spherically symmetric
nucleus, i.c., the radius r in spherical polar coordinates; g(x)

is actually of the form
G{xX) = golX) + K + 1)/ (2)

and [ is a constant arising out ol the method of separation
of variables applied to the three-dimensional Schrodinger
cquation. Physically, { is called an orbital cotational quan-
tum number, and the term /(f-+ 1)/x? is the “centrifugal
component™ of the effective potential ¢(x). The wunderlying
potential go(x) tends to a limit, the dissociation energy, at
infinity, which without loss of generality we can take as zero.

Depending on g(x) the system may be limit-peint or limit-
circle at x =0 in the standard Weyl classification: in fact,
barring exceptional gof{x), it is limit-point if 1 2 §, the com-
monest case. Like most codes that handle singular points
automatically, ours always seeks the solution that is “small”
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at x =0, since this is usually the physically meaningful one.
In the limit-circle (or regular) case this corresponds to the
so-called Friedrichs boundary condition.

Potentials possessing hound states necessarily have a
potential well—a region of the x-axis where g is below the
dissociation energy, ie, g<0. Potentials possessing
resonances necessarily have a porential barrier—a local max-
1mum g, at x = x,,,, of ¢(x) which ligs above the dissocia-
tion energy. Usually there is also a well to the left of the
barrier, but this is not necessary. Resonances occur for
energies between the dissociation energy and the barrier
maximum, that is, for 0 < 2 £ qy,,.. Weaker resonances can
also occur for / slightly above the barrier.

Most resonating potentials that have been studied
numerically have one well and one barrier. The interactions
between multiple barriers can be exceedingly complex and
make reliable software hard to construct. Therefore we con-
centrate on the one-barrier case, where it is assumed that
g(x} has a strict local maximum {xy,.., Goars) With Xy >0
and g, >0, called the barrier top; that any local maxima
of g to the left of x,,,, are less than zero; and that g decays
monotonely to zero on x,,,. < x < oo. That said, our code
has features to make it possible to handle problems with
more than one barrier, as described later.

Informally, resonances are like eigenvalues in the follow-
ing way. Solutions of {1) are, broadly speaking, of oscillat-
ing or of exponential form according as g(x) — 4 is less than
or greater than zero. For any 4 there is 2 unique solution, up
to a scalar factor, of (1) subject to the BC at zero—-call it
u=u(x; A). An eigenvalue is a A <0 for which u(x; 1) just
hits exponentially decaying rather than growing behaviour
as x — oo0. A resonance band is a usually small range of 1 > 0
for which u{x; 1) decays rather than grows within the
barrier so that when it reaches its ultimate oscillating
behaviour for large x, the ratio of its “size near zero” to its
“size at infinity” is large, whereas for most values of 1> 0
this ratio is small. The “centre” of the resonance is the A
which maximizes some measure of this ratio.

The time-delay definition is based on the “drift” of phase
of the oscillation at infinity as 4 varies. Asymptoticaily, for
4> 0 and large x, the solution u{x; 1) is approximated by

u=rsin(x /i +98), (3)
where r is the limiting amplitude (arbitrary) and § =5(4) is
the limiting phase, which 1s determined uniquely by the dif-
ferential equation and the BC at zero. A resonance is defined
to be a local maximum of the derivative

1(A)=8(1), (4}

that is, a point of inflection of 6(1). To see informally why
this is related to amplitudes, note that when A is at a
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resonance, 5o that the solution is decaying exponentially
through a barrier, then the solution at the end of the barrier
is extremely sensitive to small changes in the value of » or '
at the beginning of the barrier. In fact, 2 small increase in 4
can make the solution go from exponentially increasing
positive to exponentially increasing negative at the end of
the barrier. This “flip” is associated with a rapid increase of
& by approximately n, superposed on a generally slowly
varying trend, and hence with a “spike” in t(4).

Smuith has shown by physical arguments [67] that t(4) is
the expected delay of an electron coming in from a large
distance to the neighbourhood of the nucleus and then
escaping again, compared with the time this would take in
the absence of the nucleus.

There are other definitions used in numerical work. The
internal amplitude definition of a resonance, briefly covered
by {2, p. 51167 and going back to Rice in 19291930 [7],
comes from maximizing a straightforward interpretation of
the “size near zero: size at oo” ratio. Since the early days,
quantum physicists have made the physically attractive
interpretation that while a bound state corresponds to a real
eigenvalue, a resonance corresponds to a complex eigen-
value with small imaginary partv and is therefore a
metastable or “nearly bound” state, the size of v giving the
rate of decay out of this state and being inversely related to
the resonance sharpness. Taylor [ 1] explains the relation of
resonances to poles of the scatiering operator S as an
analytic function of the complex momentum p or equiv-
alently the energy £= p?/2m, which puts the above inter-
pretation on a firm footing.

The definition used by Hehenberger, Brindas er al.
[8-107, based on properties of the Weyl-Titchmarsh m({4)
function, is mathematically very interesting and closely
related to the S operator interpretation. This is pursued in
more detail by Brindas ef al. in [ 11-147. In particular [13]
gives methods of proving the existence of a resonance within
a certain region of the complex plane by a version of the
Gerschgorin circle theorem, see, e.g., [15]. The different
definitions of a resonance are not quite equivalent, although
for “sharp™ resonances they give very nearly the same value
for the centre of the resonance.

3. THEORY OF THE TIME-DELAY

As above, let u{x; 4) be for each 1 a solution of (1) satisfy-
ing the BC at zero, plus some normalizing condition that
ensures v depends smoothly on A. This can always be done
in various ways. To define 6(2) and t(4) precisely, introduce
Priifer variables r(x; ) and 8(x; 1) (as in Hehenberger
[16]) by

1 = i*rcos 8, u=51""rsing.

(3)
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This converts (1) to the two first-order equations

|
9’=ﬁ——sm26
7
(x)

) sin G cos 0.

NG

glx

(logr) =

Then define
S(x; A)y=6(x; A)—x ﬂ,
(e =2 (s 1)
a4

and
FoolA)y= hm r(x; ),

X —+ 00

a(A)= lim &(x; 4),

X — oo

(10)

()= lim {(x; ).

Xy 00

The foilowing is proved in [17] and covers many typical
applications, Note that there are simple examples, such as
the Coulomb porential g(x) = 1/x, where d(1) does not exist,

THEOREM 1. If [* qdx converges and q is eventually

monotone then the limits in (10) do exist, moreover,

T(A) = 6'(4). (11)

Some basic facts are brought together in the next lemma,

LEMMA 2. (i) If u and v denote the solution u(x; A) for
A= g, v, respectively, then for any b

(,u—v)f: wv dx = (uv’ — v’ )(h). (12)

(i1)
any b

Differential Green’s identity. For u=u(x; A} and

b ou ou'
Ydx=|v—=—u— 13
L u® dx (u 5 u 6:‘.)(b) (13)
(1ii) In terms of the Priifer variables,
du ou  ,00 1
ey —=r——— 'l 14
“ata T a (14

Proof. Part (i) follows from Green’s Identity

d d
J (—u"+qu)-vdx—f u-(—v" +qu)dx=Tu’ —u'v]?.

¢

(15)
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Note that the contribution from x=0 cn the right-hand
side of (12) vanishes because « and v satisfy the same BC
there; this is true whether zero is regular, limit-circle, or
limit-point. Part (ii} follows from (12) by considering
neighbouring solutions u(x; 1) and u(x; A + &4) and taking
the limit, and (iii) comes from simple manipulation.

We then have

ProrosiTioN 3. (i) Forany ¢, d in the interval of defini-

tion,
67 d I d
l:r2 a]x:{-:-[c w’ dx+|:ﬁ u’u]'(_(. (16)
(1) In particular (recalling u(x; 1) satisfies a
A-independent boundary condition at x =0}, for any b,
a8 b 1
2o = 2 d: —u 17
(r 6;‘“)“=b '[0 ! r+(2j~u u).r—b (17

From the above immediately follows Smith’s integral
formula for (A1)

THeOREM 4. (F. T. Smith). With the above notation and
under the assumptions of Theorem 1 we have for each X,

X uu' X
FAX A=) wWldv+— (X)) ———= 18
(Fe)(X; )= | AL A
and
x '’ X
2 t(A)=h Tdx+— (X, A)— . (19
2= pim ([M st 5 000 zﬁ) (19)
Proof. The first part comes from the proposition, and

the second follows from the first and Theorem 1.

4. THEORY OF THE METHODS USED

4.1. Bracketing the Resonance

Given 4 with 0 <A < ¢y,.,, define the barrier to be the
interval I round x,,,, in which g{x) = A. Say a resonance is
normal il the corresponding solution u is decaying within the
barrier, ie., u'/u<0 in /5 (Non-normal resonances seem
rare.) Equivalently, the point P{x; A)= (t'(x; 1), w(x; 1))
lies in the second or fourth quadrant in the (¢, u) plane for
xin I'5: by changing the sign of ¥ we may assume the second
quadrant. For a normal resonance there are no zeros of
u(x; A} in I;. Define the index & of the resonance to be the
number of zeros of u to the left of the barrier (excluding
x=0).

Let 4., be a normal resonance of index k. Let us (tem-
porarily) write A _{b) for the kth eigenvalue of the problem
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defined by (1) with the given BC at zero, together with the
BC ' =0 at the point &. Also write 4, (b} for the corre-
sponding eigenvalue, but with the BC 1 =0 at the point b.
The differential Green’s identity (13) implies the well-
known fact that for cach fixed b, the point P(b; A1) rotates in
the strictly positive sense around zero as 4 increases. Thus,
as A increases from A, the point P(b; Z) moves anticlock-
wise in the second quadrant with no extra zeros of u appear-
ing on the interval {0, b), until it meets the ¥ =0 axis when
A= 4 _(b). Similarly, as A decreases from A, point P(h; 1)
moves clockwise to meet the 4’ =0 axis when i=4_{b).
This proves that for a normal resonance,
L (B) S e <2, (b) (20)
for all b in the barrier (with, obviously, the two outer terms
being unequal). Further, from (12}, we have for any b,

b
(&+(b)—i.‘(b))_[ w_u, dv=—u_{b,b) i, (b;b),
0
(21)
writing u _(x; b), u_ (x; b} for the corresponding eigenfunc-
tions. In practice these (normalized} functions are almost
equal, deviating markedly only near b, so that the integral
on the left is close to 1, and we have

A AP —A_(byx —u_ib;b) 1, (b; b). (22)

4.2 Tieration 1o Find Bracketing Interval

As b moves to the right within the barrier, the interval
[A_, A, ] decreases. Thus as a preliminary to locating a
resonance, a good strategy is to find a b precisely at the end
of the barrier, i.e, a root of

q(b)=1_(8), (23)
together with A_(h) and A (¥). The behaviour of A_ and
/. helps to clarify the different cases that can arise and how
software can recognize and handle them. In terms of the
Priifer variable 6, A_(x) and A (x) are the solutions 4 of

B(x; 1) = (k+ 1=,
O(x; 2)={k+1)m,

(24)
(25)

respectively.

By an argument similar to the derivation of (13}, for an
eigenvalue of {1) subject to the given BC at zero and a fixed,
regular BC at the variable endpoint b, the dependence of A
on b is continuous and

ab (26)

=—(W?+ (A—q) ),y
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where u denotes the corresponding eigenfunction (which
depends on b) normalized so that {4 #? dx=1. In the pre-
sent notation this gives

AL (x) = (q(x) — AlxDu_(x; x P, (27)
A ()= =, (x; x)> (28)
Since an eigenfunction and its derivative cannot

simultaneously vanish, the quantities wu_(x; x)* and
@', (x; x)? are strictly positive. (Note that if ¢ has isolated
jumps, then (27) shows A_{x) has “corners™ at the jumps;
this does not affect the theory.)

LeMMa 5. With the above notation,

(i) A {x)>i_(x)forall x

(ii)

(iii) A_(x) is strictly increasing in any interval where
q > A_; strictly decreasing in any interval where g < A_; and
Alxy=0 ar a poimtx where g(x) is continuous and
g{x)=4_{x).

{(iv) Let q be strictly decreasing on some imterval I If
q(xy) < A_{x,) at some points xq of I then q(x) < A_{x) for
all larger x in L. Similarly if q is strictly increasing on I and
glxpy = A_(x,) at some xy in I then ¢(x)> A_(x) for all
larger x in [,

% {x) is always strictly decreasing.

Proof. Part (i) is in (20); parts (ii) and (iii) come
from (27), (28).
{iv) Writing k(x)=1u({x; x)* and using the integrating

factor ef**, we obtain from (27) the explicit integral
formula
xy
[ot) =y =fexe ([ ko) a5 ) ') an. 29
!

If ¢ is strictly decreasing (increasing) then the right-hand
side of (29) is strictly <0 {resp. >0) for any x, > x, and the
result follows.

Note. If g has jumps, ¢'(¢) dr is to be taken in the
Stieltjes sense dg(¢), and the result is still valid.

Specializing to the single-barrier case of most interest to
us, let us suppose as before that g decreases to zero on the
interval [= [x,,,, c0), where ¢{x,,..) = ., and, further
make the

Assumption.
X > Xpare-

g’ is continuous on [, and ¢" <0 for all

TueoREM 6 {One-barrier There three

mutually exclusive cases:

cases). are

(A) A_(x)=<0 for all x in I, in which case no b satisfy-
ing (23} exists.
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(BY  Guaer <A _(Xpare) in which case again no b exists.

(C) There isaroothof (23) in I In this case b is unique,
and is the unigue global maximum of A _(x) on L.

Proof. Since g>0 on /it is clear that {A) excludes (B)
and (C). Also if (B) holds then by Lemma 5, g(x}< 4_(x)
for all x in / so (C) cannot hold. Thus (A), (B}, (C} are
mutually exclusive. To show they are exhaustive we suppose
that (A), (B), and (C) all fail and derive a contradiction,
That is, _{x,)>0for some xyin J, and A _(Xyer ) € Gpare =
q{Xva,,) and there is no root of g(x)=4_(x) in L Then
g — 4 _ must be of one sign, namely >0, on I, so by Lem-
ma 5{iii), A_ is increasing onJ This implies that g(x)>
A_(x)z=A_{x,)>0Tor all x = x,, contrary to the fact that
g — 0. This shows that (A), (B), and (C) exhaust the
possibilities.

If a root exists in I then there is a smallest such root b and
Lemma 5 shows that g(x) < A_(x) for all x> b so that b is
unique. Then 7 _ is increasing for x < b and decreasing for
x> b by Lemma 5, s0 b is the unique global maximum of 4 _
and the proof is complete. ||

The last thcorem leads to a simple iteration process for
finding b and A_(b):

ArcoritiM 1 (Iteration for 4 _(5)).

Input: go(x) and /, defining g(x).
Xpare, the position of the barrier top, and gy, .

k =no. of oscillations “before the barrier.”

1. Evaluate A_(x,,.). If this is > ¢y, fail.
If it iS =G arr, Xit with b=g, . and A_(b) = qy,-
2. Find an x, (which may be x.,,) for which i,=
A_(xg) >0
1f none can be found, fail.
3. (At this point necessarily 0 < A¢ < @parr-)
For m=1, 2, ... until converged, do steps 4, 5.

4. Set x,, = (root of g(x,,)=4,,_,).
5' Set ;‘nf=)'~(xnr)'
6. Exit with the final x,, and 4, as b and A _(b).

THEOREM 7. Subject to the assumptions above, the x,,,
A, n steps 35 of this algorithm converge certainly and super-

linearly to b and % _(b).

Proof. The method is simply fixed-point iteration
Am=¢l4,,_1)

on the function ¢(A) =21 _ (g~ '(4)), where g~ ' is the inverse
function of ¢ regarding the latter as a mapping from f to
(0, Gpare ) Since A'_(b)=0 and ¢'(b) is assumed nonzero, it
follows that ¢'(2_(b))=0 so, sufficiently close to i _(b),
convergence is superlinear. To see that the method always
converges, note that i, < A_(b)=g{h) for m = 0 because b

PRYCE

is the global maximum of 1_(x); hence x,, =56 for m=1
because g is decreasing. Thus, g(x,,_ )< A_(x,)form=1;
that is, 4,,_, < 4,,. Thus the iterates 4,, form a bounded
increasing sequence whose limit A must satisfy A _(x) = A for
some x with ¢(x) = A; that is, x is a root of (23). By unique-
ness, x must be b and A must be A_(5). |

When g is sufficiently smooth as in typical applications,
A_(x) has a smooth maximum at b (ie, A_(b+1)=
2 _{b)+ O(+*) for small ) and convergence is quadratic. In
experiments, it was found that usually only three or four
iterations were required for convergence to tolerances of
around 10~°,

4.3, Asymprotic correction of T{1)

A disadvantage of existing algorithms based on the time-
delay is that, with typical potentials g(x), one needs to
integrate out to very large distances in order that &(x; 4)
and r(x; A) approximate sufficiently well to their limiting
values. It is useful to make use of the fact that the underlying
potential go(x) usually decays faster than O(1/x?) at infinity,
We now describe how this can be done.

With b as in the last subsection, choose X = b so that ¢
camn, for x> X, be taken to be equal to /(I + 1)/x>. We can
write

reM ) =@ H+ [FOGAIE. (30)

For x = X the differential equation is to be taken as being
) ( . V= 1/4)
u' i A— u=0,

x2
where v={+1 (so /({+ 1) =v*—3), solutions of which are
scaled Bessel functions:

(31)

u:Ai_”“j(x\/Z)+Bﬂ,'my(xﬂ), (32)
where
=SR2 a0, v =SR2 Yy (33)

the factor \/n_/?. being put in so that j and y each oscillate
with amplitude one at infinity. Here 4 and B depend on Ain
an unknown way, but note that the RHS of (16} in Proposi-
tion 3 contains no derivatives with respect to 4, so il we
replace the actual family u(x; ) on [X, co) by any other
family of solutions to (31) that coincides with ours when
A =1y, then we shall obtain the same value of [r*z]¢ (for
A= 4,). A convenient choice is

w=i""r(x /), (34)

where

fU)=Aj(1)+ By(1) (35)
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and A4, B are {rozen at their values in (32) when A=A,
Clearly then for A= 4,, (32} and (34) coincide.
The functions j, y and hence f are solutions of

dyf — I
— (1_ )f 0.

We may now evaluate 48/82 by direct differentiation,
From (14} and the definition of t(x; 4) we have

(36)

u’ uu’ X
2 gy g — o 7
G R P TR (37)
By (34), writing ¢t = x \/ 4, we have
u'=21"fr),
du
G _Z -y 33
Z=JATR0), (38)
S |
%7/‘3’7 N+ f‘”“f”(r),
and
=T+ ) (39)
Substituting into (37) and using (36) gives
2 2
r21=_g._1/4.)i_ (40)

2xA

As said above, this #*z is not the one for our actual solution,
but the change in it over any subinterval of [ X, w0} is the
same as for our actual solution, when X = A;. Now since all
solutions of (36) are bounded at oo we have lim ., r’t=0
in (40), whence

[rie]% = —(F1)(X; 4)
(=14 uX; L)’
B 2x} ’

We derived this for a particular A= 4,, but on the way,
explicit reference to the A, B that belong to this %, has
dropped out of the RHS. We have thus proved

THEOREM 8 (Bessel correction). Given that g(x)=
(v* = /x* for x = X, we have for any i >0,

(v~ 1/4) u(X; A)?

r2(A) t(A)=r(X; AP 57

(X A)+

(41)

Clearly, since the correction term is O(1/X), the aiter-
native of integrating out to a point where it is negligible can
be quite expensive.
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4.4. Computation of r

It is necessary to compute r2, (4) in order to compute 7(4)
in {41) and for this we need to compute A, Bin (35). By [18,
p- 361, (9.2.29)],

jl2)=m(1) cos(B*(1)),

yty=m()sin(0*(r)} (1> >), (42}
where =r— 24+ 1/dyn+O(1ft) and m{t)=
1 4+ O(1/¢%), and it easily follows from this and {39) that
r? - A% + B? as x — o0, that is,

ri{i)=A"+ B

Now writing 7= x /A and T= X ./, we have by (34), (38)

(43)

u(X) = 27 Vf(T) = i~ " 4H(T) + BY(T)),
W (X)= 2O T) = 44T (T) + By (T))

Since j, y are solutions of (36) the Wronskian jy'— yj" is
constant, and equal to one in view of (42), so these equations
can be solved to give

(5)=( s
B —Jj(T)
and then (43} gives the result.

Note that by the recurrence relations [18, p. 361 (9.1.27) ]

we have
ji)= /] (“/2 ‘. mm)

and similarly for y(1). A convenient way to compute the
required Bessel functions is Amos method [19] as
implemented, for instance, in NAG routine S17DLF, which
candeliver H'V'=J,+iY,, H{!! \ =J,,,+iY,  inasingle
call.

-7 ))( AYu(X)

S PRt

(46)

4.5, Interpolation between o and 4 |

There is a further bonus of the bracketing process, as
follows. Let b be the barrier end defined by (23). Revert to
the notation u(x; 4) of Section 3 and assume u normalized
over [0, b]:

jb u(x: D)2 dx=1. (47)

Consider the path of the point P(5; 2) introduced in Sec-
tion 4.1 as 1 varies from A_(b) to 4 (b). We leave b fixed,
so we write A _, 2, for A_(b), A, (b) in this section,
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FP(b; A_) has the form (0, v_), where u_ (u_ >0} equals
u_{b; b) in the notation of Section 4.1 or w{b; A _) in the pre-
sent notation. Similarly P(b; A, ) has the form (u., 0},
where #', (#. <0) equals w/ (h;b) in Sectiond.l or
u'(b; A ) here.

It turns out that the path of P between these limits is very
necarly a lineqr function of 4; that is,

Ph; M=, (1=t u_) (48)
very nearly, where A=(1—1)i_+1i,, 0gr<l, very
nearly. (This is an experimental result. We have at present
no theory that quantifies the closeness to linearity although
it is clear that the sharper the exponential decay in the
barrier, i.e., the sharper the resonance, the more nearly it
holds.) This gives a cheap estimate for initial conditions at
b from which we may integrate further up to an X where
g(x) approximates to (/4 1)/x? sufficiently that the Bessel
correction may be applied.

Information that is available for free once A_, i, have
been found gives a higher order interpolant. Namely the
differential Green’s identity (13) gives

du ou’'

——n—=1 49
Yo “9)
at b for the normalized solution. Applied for A=A_, 4, this
gives one value each of du/64 and du'/0A. Matching a
quadratic to these gives

P(b; i), {t—CH{1 — )b u_{(1—-1)— Cr(1 —0)}).
(50)

This proved to give erratic results and the code uses an
interpolation based on solving the eigenproblem one or two
more times to find further “exact™ P(b; 4) values for suitably
chosen Ze [A_, /. ]. This allows error estimation and has
proved more reliable.

5. IMPLEMENTATION

5.1. Design Criteria
In outline, the algorithm has these two ingredients:

« The function (i) is estimated for any given 1 by
integrating the differential equation from zero sufficiently
far to estimate the limits on the left and right sides of (19).

« The resulting function 1s maximized over a suitable A
range.

The overali cost of the computation is due, first, to the cost
of each individual integration and, second, to the number of
integrations, ie., () evaluations, needed overall. In con-
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cept our method is very similar to that of LeRoy's
TDELAY. However our aim was to make the code con-
siderably more reliable than TDELAY while not losing
efficiency. The various algorithmic features we have incor-
porated reduce cost on both the fronts just mentioned and
appear to have achieved the desired combination of
efficiency and robustness.

A second aim was to make a code that was easier to use
than TDELAY. The latter is a complete program rather
than a subroutine and has no clear separation between
input which defines the potential function for the problem
to be solved and input of initial guesses, stepsizes, etc. for
the algorithm. We feel this also has been achieved.

TDELAY integrates (1) in untransformed form by the
well-known Numerov method with a fixed stepsize & and
without built-in error estimation. Thus for accuracy it is
necessary to choose A to fit the worst-behaved part of the
solution, The integration is also taken out to potentially
very large x to estimate the limiting behaviour satisfactorily.
The result is less expensive than one might expect because
the code stops integrating when the estimates of t at three
successive steps agree within a tolerance: the smaller the
stepsize the easier it is for this to happen. TDELAY searches
for all resonances in a given 4 range, without a means of
individually identifying them. This is a good feature in some
ways, but makes the code liable to miss very sharp resonan-
ces and, often, to fail if a good enough initial guess is not
given.

Our code RESON makes use of the standard Sturm-—
Liouville eigenvalue solver SLO2F (Marletta and Pryce
[20], Marletta [217) based on a Pruess coefficient approxi-
mation method [22, 23]. The integration from s to X is
done by an adaptation of the same method. Both parts of
the process have built-in error estimation and stepsize
control. We have as yet no well worked out theory of the
relation between this “internal” error control and the error
in the computed resonance position and width, but it
produces quite good correspondence between the error
tolerance given to the code and the resulting error as far as
we are able to tell.

We took the view that for a robust code it is desirable to
“index” resonances in the same way as one can do for eigen-
values and to look for the presence or absence of a par-
ticular resonance. This has been done using the index
defined in Subsection 4.1.

The code uses the methods described in Section 4, namely
the preliminary bracketing “fix™ [A_, 4, ], the Bessel func-
tion asymptotics and the interpolation over [4_, A,_]. The
bracket has always proved to bracket a unique resonance in
our experiments, and the sharper the resonance, the smaller
the interval. This helps both robustness and efficiency.

The position x,,, of the barrier which produces the
resonance is an important input to Algorithm 1. We ask the
user to supply an interval expected to contain x,,,, and the
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code locates it more accurately. This makes it possible (with
circumspection) to handle problems with several barriers,
provided they do not interact too badly.

An apparently minor but significant algorithmic point
should be mentioned here. The resonance is found by maxi-
mizing t(4) without having derivatives of the latter available
(we use NAG routine EO4ACF). Clearly, at a typical
{quadratic) maximum, errors of O(¢) in 7 can induce errors
of O(\/;,) in the computed resonance. Thus to obtain consis-

tent results it helps to reduce any errors that are
“uncorrelated” between different evaluations of1, We
experimented with several ways of doing the integration
from b to X. Methods with variable stepsize control done
independently at each evaluation seemed to cause too much
“uncorrelated error.” The method chosen uses a fixed initial
mesh  with repeated mesh bisection and Richardson
extrapolation done as many times as required for accuracy.
Thus in practice, all evaluations {once sufficiently near the
maximum} use the same meshpoints. This appeats to give

satisfactory smoothness to (i)

5.2. Outline of Algorithm
The resulting algorithm is as follows.
ALGORITHM 2 (Time delay method).

gs(x) and I, defining g(x).
Xpare» the position of the barrier top.
k = no. of oscillations “before the barrier.”

Inpur:

With & without Bessel Correction

I. Find A_, b, 1, by Algorithm 1.
Record u(h), u'(b), {4 u? for solutions found.

Find X where g, becomes negligible (this is independ-
ent of step 1.}
3. For A_ < i< i, define a function (1) by

— Form u(b), u'(b) by interpolation.
— Continue integration numerically from these

initial values to X and compute ¢{ X).
— Evaluate [¢]5 and r, as above.
— Hence evaluate t(4).
4. Maximize t{£) over [A_, A, ].
The above algorithm has beenimplemented ina Fortran 77
subroutine RESON, whose parameter list is summarized

below.
Input
coefin real function defining gq(x).
4 real, the parameter J, where g(x)=gq(x)+
J(J+ 1)/x%
k integer, the index of the resonance.
xlo, xhi real, defining an interval supposed to contain
the position of the barrier top xy,,,-
tol real, an absolute accuracy tolerance.
Output
elam real, the computed resonance A.
delam real, an estimate of the error in 2,.,.
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tau real, the value of t(4.,). The larger this is, the
sharper and narrower is the resonance.

info real array, containing ancillary information.

ifail

integer, the usual NAG-style error indicator.

The code and user instructions are available from the
author and will be covered more fully in a later paper.

6. NUMERICAL RESULTS AND COMPARISONS

Tests of RESON were carried out on two problems for
which numerical results are available in Marletta [24, 3].
The computing system was the VAX 8820 at RMCS, using
VMS Fortran 77 in double precision, a precision of about
16 decimal digits. The first problem is a Lennard-Jones
LJ(12, 6) potential defined by

1.92 RNZ _/RASN I+ 1)
— D e —_2f =
9(x) = {5 858036 °¢ (( x ) ( x) ) e

(51)

(the strange factor is due to conversion between different
physical units). The second is a Morse potential defined by

({e =R D)2 _ (g xx/Re= 1)) 4 i “‘2 1)_
X

g(x)=D

L4

(52)

We first give some results which illustrate the internal
workings of the code, as follows. Figure 1 shows the
improvement given by the Bessel correction for one typical
case. One curve shows 1(X; 2) as a function of X. The other
shows the approximation to 7{1) obtained by applying (41)
at the point X, as a function of X.

To illustrate the shape of the 1 “spike,” Fig. 2 shows the
graph of (1) between A_ and A for three typical resonan-
ces—broad, medium, and narrow—of the LJ potential. For

TABLE I

Test of Three Codes on a Lennard—-Jones Potential

1.92 R\ RASY H{I+1)
=——_pl|[=) -21=
)= 15358056 ((l) (x) )+ ¥
RESON RESONE TDELAY

D, i i 2. t CPU 4, CPU 4, CPU
62 0.089966 0.089966 0.089966 29e8 184 — — 0.99* 1.56
60 0.219685 0.219682 0219690 4.0e5 109 0219685 36 023765 1.66
55 0.525025 0523375 0.527001 89e2 94 0.524179 43 0.52494 1.0
50 0.795038 0776613 0.821643 69e1 103 0.795142 44 079492 047
45 1.034113 0.982052 1.154640 18el 95 1035426 137 1.03302 0.62
40 1252641 1.182421 1.702625 7.2¢0 89 1248339 120 L1.24970 0.67
Note. TOL=10"% R,=3.56, [=7, resonance index &k = 0.

JOHN D. PRYCE

TABLEII

Test of Three Codes on a Morse Potential

q(x) = D.,((Ef" \','R,—n)z —- z(e—sl.\m,v 1 I)) + f”:;l )

RESON RESONE TDELAY

D, A i i, t CPU 4, CPU i, CPU
55 0044005 0044005 0044005 19¢8 374  0.044005 59  0.0440 0.6
54 0.054967 0.154906 0.155041 24ed 166 0154966 78 01550 1.08
530252199 0250714 0254077 9.5¢2 159 0252205 99 02520 0.2
52 0334729 0327338 0345509 17e2 143 0335008 76 03347 027
51 0404204 0386700 0437284 5.8¢c1 145 0404043 99 04040 0.19
SO 0463002 0435262 0540247 28el 144 0462438 03 04623 026
Note. TOL=10"% R,=3.36, a =4, { =7, resonance index k = 5.

each one we graph t as computed by the “linear” and

“quadratic” methods of interpolating between A_ and 4,
and by a more expensive method which does not use inter-
polation. These were obtained using the subroutine for com-
puting T which forms part of the package, after locating 2 _,

TABLE IIT

Some Results for Higher-Order LI(12, 6) Resonances;
R.=10,1=20,k=5,6,7, TOL =10"¢

b, Ags A_ Ay Tes CPU
Resonance index k=5
134 / above barrier
135 0.61186 0.5953 0.6723 Slel 143
140 0.55855 0.5498 05710 1.5¢2 133
160 0.207128 Same Same 1.7e10 143
165 0.090651 Same Same 1.1e17 18.2
167 0.041595 Same Same 1412 21.2
168 SLOZF fails
169 / below zero
Resonance index k=6
165 4 above barrier
166 0.55173 0.536 0.607 551 124
180 0.407217 0.406910 0.407532 54e3 154
190 0250914 Same Same 59¢7 146
200 0.060958 Same Same 4.0e19 13.2
202 0.019518 Same Same 1.7e67 242
202.5 SLO2F fails
203 / below zero
Resonance index &k =7
199.5 4 above barrier
200 0.50308 0.4894 0.5567 60cl 140
210 0.427436 0.4245 0.4306 5.5e2  14.3
220 0.316401 (.31638 0.31641 1.2e5 142
230 0.173339 Same Same 18el0 156
238 0.040645 Same Same 2.2e13 17.1
240 ' SLO2F fails
241 A below zero
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x10§ 1J12,6 De=60 +=linear, .=quadratic, solid=true method
4.5 — T T : - T T
A
4 - 4
3.5 4
3 - -
T 25+ N
2 4
1.5 i
1+ i
0‘5 L 1 1 ] 1 I 1
0.219681 0.219683 0.219685 0.219687 0.219689
0.219682 0.219684 0.219686 0.219688 0.219690
A
LJ12,6 De=50, +=linear, .=quadratic, solid=true method
a0 T . . T r : T . r
70+ -
60 |
50 B!
T
40} -
30+ E
20+ J
10  — 1 - 1 L 1 1 1 —_ 1
0.775 0.78 0.785 079 0.795 0.8 0.805 0.81 0.815 0.82 0.825

FI1G. 2. Graphs of 7 against  where A=A_ + (4, —A_), for LI{12, 6) potential, R, =3.56, =7, D =40, 50, 60, resonance index k =0.

A by the method used in RESON. They thus call on all the
algorithms in RESON except the final maximizing process.

Second, we give results of some experiments with
RESON itself, summarized in Tables 1, I, with comparable
results from Marletta’s experimental code RESONE [24]
and from TDELAY. RESONE uses similar ideas to
RESON but has neither the bracketing 2_, 1, process nor

the Bessel correction. In these, the depth D, of the well was
varied keeping other parameters unchanged, to make the
resonance 4 come in at the top of the barrier (a broad
resonance) and move down toward zero, at which point the
resonance becomes infinitely sharp and A becomes an eigen-
value. We give the value of RESON's A_, 2 {“same” means
that they equal i, to the number of figures given). The

res
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LI12,6 De=40, +=linear, .=quadratic, solid=true method

8 T

1.2 1.3

1.8

FLG. 2—Continued

value of r at the resonance is given to indicate the sharpness
of the resonance. “CPU” values are time in seconds on the
VAX 8820 at RMCS.

TDELAY is far from auwtomatic, requiring integration
limits, (constant) stepsizes, and other method parameters to
be set by the user; consequently comparisons of runtimes
are not very meaningful. For the LJ(12, 6} results, integra-

LI(12,6) with 1=20
0.7 : :

tton was started at x = 0.2 with stepsize 0.03 and continued
out to around x =300. The author easily persuaded it to
find an index zero resonance of the LI(12, 6) problem for
40 < D, < 56 and (with difficulty) for 57 < D, < 60.5. On the
latter range it found an index one resenance (marked * for
D, =62} which RESON refused to acknowledge. For the
Morse results integration was started at 0.2 with stepsize

Re=10, indices k=5,6,7.8

k=
0.6

0.5 ™,

0.4t

0.1r

: L

T T T

k=i

120 140 160 180

220 240 260 280

FIG. 3. LJ{12.6) potential with R, = 10, / = 20. Resonances of various indices k plotted against D,.
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0.02 or 0.01. TDELAY needed even more help with initial
trial values of 1 {which were chosen about 0.01 away from
the value found by RESON) and the search-step in the 4
direction {around 0.002 or 0.001), else it failed to converge
or, sometimes, gave results which seemed to indicate success
but were wrong on closer examination.

Table IIT shows a family of resonances for the LI(12, 6)
potential for { = 20. This was chosen as'giving a barrier large
enough to accommeodate more than one resonance for cer-
tain values of D, (e.g, D,= 200 admits both a k=6 and
k =7 resonance). R, {which is essentially a scaling factor for
the equation) has been taken as 10 to give modest values
for D,. The index k=35, 6, 7 resonances are tabulated for
various D, over their range. This is an abbreviated version
of the results shown graphically in Fig. 3. In these computa-
tions the only hiccups in RESON were due to the eigen-
solver SLO2F failing, This happened at the sharpest
resonances, for which the barrier end b is quite large {since
2. 1s small positive). The reason seems to be that SLO2E then
has difficulty in mesh selection for a problem that has most
of the action concentrated at one singular end (x =0) with
the other end being regular. This is not due to any inherent
difficulty in the problem at hand.

7. SUMMARY AND CONCLUSIONS

The tests show that generally RESON is much cheaper to
use than RESONE. Meaningful comparison with TDELAY
as regards efficiency is difficult as the latter depends so much
on user-supplied stepsizes and other tuning parameters.
These affect not only the efficiency but whether any results
at ail are obtained. The strongest feature of RESON appears
to be its robustness. It needs to be given the basic mathe-
matical definition of the problem, namely the differential
equation and a resonance index, Then, apart from an
accuracy tolerance, the only extra information it needs to
become started is some guide as to where the barrier is. If a
resonance of the given index does not exist it diagnoses & as
too large or too small; this seems to be reliably done. Thus
RESON is a reasonable approximation to the goal of an
“automatic” code.

RESON proved able to cope with resonances of sharp-
ness from r = O(1} to 1 = O(10'%) or higher with similar ease
as shown by the CPU figures. However, at very sharp
resonances there is some erratic behaviour in the computed
7 values (see the tables).

Various convenience features could be added to RESON
without undue effort, In particular if a resonance of the
requested index does not exist it could be directed to return
the “lowest,” or the “highest,” resonance associated with the
barrier.

TDELAY is the most prone to obtain inaccurate results,
especially for sharp resonances. RESON’s preliminary
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location method makes it possible to find resonances
which RESONE cannot and which require considerable
cxperimentation to find with TDELAY.

The most doubt attaches to the accuracy of the results
produced by any of the codes for the case of broad resonan-
ces, For the author’s code, various different methods of
doing the integration from & to X in computing t(X; 4) were
tried, and discrepancies of order 102, in the computed 2.,
were common with tolerance around 10~° This is consis-
tent with there being errors of @(10~%) in values of a func-
tion which is being maximized by an algorithm that does
not use derivatives. For example, one trial did integrations
with a uniform mesh, using the Pruess-type method with
extrapolation used in the eigenvalue-solver SLO2F [207; it
was observed that merely changing the number of steps
could cause significant movements in the position of the
maximum. It seems that the position of broad resonances
may be inherently ill-defined in the sense of being highly
sensitive to small perturbations in g(x). A rigorous sen-
sitivity analysis of this problem is required and does not
seem to have been carried out.

In future work we aim to report on the performance of
RESON on probiems with more than one barrier.

The author thanks Dr. Marco Marletta for his work in
running some of the tests and for many constructive com-
ments on earlier drafts of the paper and NAG and SERC for
their financial support.

RESON is available from the author at: Software
Engineering Group, Shrivenham, Swindon SNé 8LA, UK.
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